Jittery, a Mutator distant relative with a paradoxical mobile behavior: excision without reinsertion.
نویسندگان
چکیده
The unstable mutation bz-m039 arose in a maize (Zea mays) stock that originated from a plant infected with barley stripe mosaic virus. The instability of the mutation is caused by a 3.9-kb mobile element that has been named Jittery (Jit). Jit has terminal inverted repeats (TIRs) of 181 bp, causes a 9-bp direct duplication of the target site, and appears to excise autonomously. It is predicted to encode a single 709-amino acid protein, JITA, which is distantly related to the MURA transposase protein of the Mutator system but is more closely related to the MURA protein of Mutator-like elements (MULEs) from Arabidopsis thaliana and rice (Oryza sativa). Like MULEs, Jit resembles Mutator in the length of the element's TIRs, the size of the target site duplication, and in the makeup of its transposase but differs from the autonomous element Mutator-Don Robertson in that it encodes a single protein. Jit also differs from Mutator elements in the high frequency with which it excises to produce germinal revertants and in its copy number in the maize genome: Jit-like TIRs are present at low copy number in all maize lines and teosinte accessions examined, and JITA sequences occur in only a few maize inbreds. However, Jit cannot be considered a bona fide transposon in its present host line because it does not leave footprints upon excision and does not reinsert in the genome. These unusual mobile element properties are discussed in light of the structure and gene organization of Jit and related elements.
منابع مشابه
TED, an autonomous and rare maize transposon of the mutator superfamily with a high gametophytic excision frequency.
Mutator (Mu) elements, one of the most diverse superfamilies of DNA transposons, are found in all eukaryotic kingdoms, but are particularly numerous in plants. Most of the present knowledge on the transposition behavior of this superfamily comes from studies of the maize (Zea mays) Mu elements, whose transposition is mediated by the autonomous Mutator-Don Robertson (MuDR) element. Here, we desc...
متن کاملMechanisms of glycosylase induced genomic instability
Human alkyladenine DNA glycosylase (AAG) initiates base excision repair (BER) to guard against mutations by excising alkylated and deaminated purines. Counterintuitively, increased expression of AAG has been implicated in increased rates of spontaneous mutation in microsatellite repeats. This microsatellite mutator phenotype is consistent with a model in which AAG excises bulged (unpaired) base...
متن کاملDna Repair
1. DNA Damage 1.1. Spontaneous Alterations of DNA (by Mutator Genes) 1.2. Environmental Damage to DNA 2. DNA Repair by Reversal of Damage Without Excision 2.1. Photoreactivation 2.2. Repair of O-Alkylguanine and Alkylthymine Without DNA trand Excision 3. Base Excision Repair in Non-Mammalian Cells 3.1. DNA Glycosylase in Non-Mammalian Cells 4. Base Excision Repair in Mammalian Cells 4.1. DNA Gl...
متن کاملThe orbital and sinonasal hemangiopericytoma, 2 case reports:
Background & objective: Hemangiopericytoma is an uncommon vascular tumor derived from the pericytes of Zimmermann. . The most common location of the tumor is pelvic retroperitoneum and musculoskeletal system of the lower extremities. It is rarely seen in the head and neck area. In addition, only 0.8% to 3% of all orbital tumors and less than 5 % of primary sinonasal tumors are primary hemangiop...
متن کاملMutator Mutations Enhance Tumorigenic Efficiency across Fitness Landscapes
BACKGROUND Tumorigenesis requires multiple genetic changes. Mutator mutations are mutations that increase genomic instability, and according to the mutator hypothesis, accelerate tumorigenesis by facilitating oncogenic mutations. Alternatively, repeated lineage selection and expansion without increased mutation frequency may explain observed cancer incidence. Mutator lineages also risk increase...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 16 5 شماره
صفحات -
تاریخ انتشار 2004